

Soil Quality: What is it & how do you improve it?

Bill Crooks

SAC Consulting is a division of SRUC

Leading the way in Agriculture and Rural Research, Education and Consulting

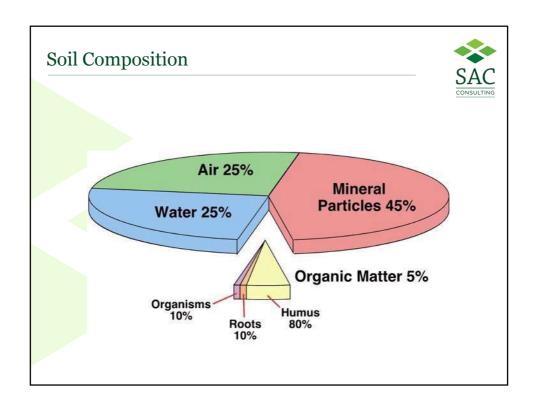
Soil Quality: What is it?

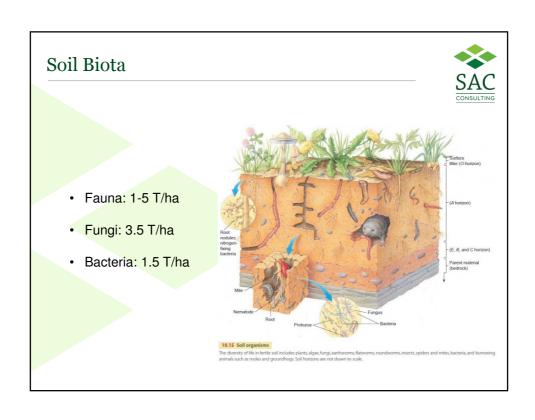
- More productive ?
 - Nutrient status
 - pH
 - Drainage
 - Structure
- More biodiversity ?
 - Organic content
 - Amount and type
 - Plant (crop) diversity
- More sustainable ?
 - Storing carbon
 - Minimum tillage

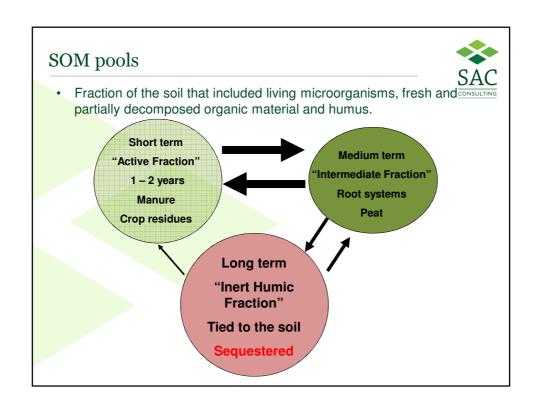
Soil Quality: My definition

A quality soil is one that is managed in a such away that it meets the needs of today without impacting the needs of the future

- Todays need is profitable crop production
- Tomorrows need?
- Key characteristics to protect
 - Long Term "Humic" organic fraction
 - Topsoil layer




Soil Organic Matter (SOM)



 Fraction of the soil that included living microorganisms, fresh and partially decomposed organic material and humus.

Soil Organic Pools

Fraction	Amount (t/ha)	Turnover time (years)
Readily Decomposed plant material (crop residues – manure)	0.1 (<1%)	0.2
Resistant plant material	0.6 (2%)	3.3
Microbial biomass	0.3 (<1%)	2.4
Physically protected organic matter	13.6 (47%)	71
Chemically stabilized organic matter (Humus)	14.6 (50%)	2900

- Jenkinson (1981)

SOM pools

- Short term
 - Stable in most grazing systems
 - Mainly act as fertilisers
 - Prevents pressure on other pools
 - Manure back on silage land
- Medium term
 - Stable in most grass systems
 - Linked to well established root systems
 - Quickly lost after cultivation
- Long term (Black gold)
 - Fundamental aspect of a good quality soil
 - Fed by the medium term pool
 - Main threat is erosion
 - Gives soil its colour and structure

SOM pools

Soil erosion is the #1 concern – lose both the soil and the humic fraction

5

Measuring SOM – Minimum Targets

Loss on ignition test

Soil	SOM levels (%)
Old Pasture	9
New pasture	7
Arable soil	6

Soil Quality

• What is the "bury by undershirt" trying to show?

Soil Quality

- Presence of an active biological fraction
 - Diverse and active biological fraction improves
 - Nutrient cycling
 - Soil structure
 - · Resistance to diseases and pests
- Variability in how efficient this fraction is at "cycling" nutrients in the short term pool
- What factors will impact this test?

Soil Quality

- What factors will impact this test?
- Fixed factors
 - Temperature
 - Moisture
 - Excess water
 - Lack of water
 - Soil type and texture
 - SOM types and amounts
 - Rooting potential
 - Drainage potential

Soil Quality

- Managed Factors
 - Presence of soil biota
 - Continues mono cropping (no diversity in feedstock for the soil)
 - SOM inputs (manure)
 - Excess water
 - Poor drainage
 - Soil compaction
 - Oxygen levels
 - Poor drainage
 - Soil compaction
 - Cropping system
 - Rotation
 - Sward Age
 - · Rooting depth

Soil Quality

- Other Factors
 - pH?
 - Nutrient status (N,P,K)?
 - Micronutrients ?

Soil Structure

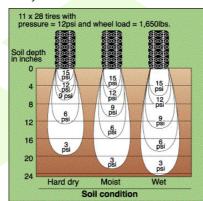
- All biological and chemical reactions occur on surfaces
 - Root uptake
 - Decomposition
 - Storage and Exchange of nutrients (cation exchange capacity)
- Most biological activates and organisms that are beneficial to soil quality require oxygen (anaerobic)

Compaction – The Problem

- Soil compaction
 - Mechanical or naturally occurring compression of soil resulting in
 - Reduction in pore space (reduced surface area)
 - · Breakdown of soil structure
 - · Water Air and Roots cannot get through

Types of Compaction

- 1. Cow Pan (poaching, grazing pan) 5 10 cm depth
 - Consequence of livestock traffic
 - Stocking density
 - Drainage
 - Always happens and many soils can recover

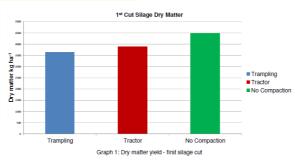


Types of Compaction

- 2. Machinery Pans 10 15 cm
 - Drainage
 - Equipment weight
 - Tyres

Types of Compaction

- Pans (10 30 cm)
 - Wheeling pans (10 15 cm
 - Plow Pans (20 40 cm)
- Caused by soil smearing differs from compression
- Serious issue due to the nature of the damage



Impact of Compaction

- Reduced Yield
 - Major concern but hard to measure in grassland systems
 - Systematic compaction (full field) will likely reduce yields by ~ 20%.
 - Long term build up of a compaction layer in the upper profile
 - First cut impacted the most Why?

Source: Dairy Co.

Impact of Compaction

- Reduced growing season
 - More water hanging around for longer
 - Reduced drainage
 - Lose two weeks of the growing season
 - Lower temperature
- Impaired root growth
 - Shallower and denser
 - Less efficient nutrient uptake
- Environmental
 - Nitrous oxide emissions are high from compacted soils
 - Increased surface runoff and soil erosion

Lifters vs Sub-Soilers

- Lifters work within the topsoil and are designed specifically to do s6^{ONSULTING}
 - Target depth no grater then 30 cm
 - At least 4 legs
 - Cutting discs
 - Rollers to control heave
 - Smaller tines (variable)

Soil Quality

What can you manage?

Testing Soil Quality

- Organic content
- Carbon Content
- pH
- P, K, Mg
- Micro nutrients
- Ca
- Cation Exchange Capacity (CEH)
- Soil respiration
- Sorption Capacity

Testing Soil Quality

- Endless number of factors but only one will be a limiting factor at any one
- The basics must be addressed first
 - Ha -
 - Drainage
 - Soil Structure
 - P, K, Mg
 - Nutrient management

Magnesium (Mg)

- Key plant nutrient but not a commonly deficient in Scottish soils
- Excessive Mg can cause a breakdown in soil structure
 - Primarily a concern for clay and silty soils
 - Mainly the result of naturally high levels
- Can impact plant update of Potash (K)
- Possible concern if Mg results are > 1000 mg/l based on SAC testing
- Unlikely and issue unless shown to be present at high levels

Calcium (Ca)

- Micro nutrient for plant growth
- Commonly found in many fertilisers formulations
- Not a common deficiency

Fertiliser versus soil improver

- Ca can improve sodic soils or those that have been flooded with sea water
- Little evidence for other benefits as a soil improver beyond this

Scottish soil online (http://map.environment.gov.scot)

